Molecular electronic states near metal surfaces at equilibrium using potential of mean force and numerical renormalization group methods: Hysteresis revisited.

نویسندگان

  • Wenjie Dou
  • Abraham Nitzan
  • Joseph E Subotnik
چکیده

We investigate equilibrium observables for molecules near metals by employing a potential of mean force (PMF) that takes level broadening into account. Through comparison with exact data, we demonstrate that this PMF approach performs quite well, even for cases where molecule-electrode couplings depend on nuclear position. As an application, we reexamine the possibility of hysteresis effects within the Anderson-Holstein model (i.e., an impurity coupled both to a metal surface and a nuclear oscillator). As compared against the standard mean field approach by Galperin et al. [Nano Lett. 5, 125 (2005)], our PMF approach agrees much better with exact results for average electronic populations both at zero and finite temperature; we find, however, that mean field theory can be very useful for predicting the onset of dynamical instabilities, metastable states, and hysteresis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

Finite-temperature numerical renormalization group study of the Mott transition

Wilson’s numerical renormalization group method for the calculation of dynamic properties of impurity models is generalized to investigate the effective impurity model of the dynamical mean-field theory at finite temperatures. We calculate the spectral function and self-energy for the Hubbard model on a Bethe lattice with infinite coordination number directly on the real-frequency axis and inve...

متن کامل

Ab initio study of the Surface Passivation influence on electronic and optical Properties of (001) SbNSr3 anti-perovskite Surface

In this research, the electronic and optical properties of the (001) surface of SbNSr3 with SbSr and NSr2 terminations and surface passivation impact on electronic properties were investigated. The calculations were done within density functional theory and using pseudo-potential method. HSE hybrid functional was used for exchange correlation potential. The surface calculations were performed t...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 7  شماره 

صفحات  -

تاریخ انتشار 2016